Mark Scheme 4728 June 2006

Mark Scheme

June 2006

			D (
1		Momentum before = $3M$ -	B1		Ignore g if included; accept
		1200×3			inconsistent directions
		Momentum after = 1200×5	B1		
					(or loss of momentum of
					loaded wagon = $3M$
					B1
					gain of momentum of
					unloaded wagon = $1200(5 + 3)$
					•
					<u>B1)</u>
		3M - 3600 = 6000	M1		Equation with all terms; accept
					with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> ,
					Μ
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
	.,				direction or for relevant use of
					trigonometry
		$2.5 = 6.5 \sin \theta$	A1		
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	· · · · ·	$\theta = 22.0$			
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant
					trigonometry.
		$R = 6.5 \cos 22.6^{\circ}$	A1		
		<i>R</i> = 6	A1	3	

June 2006

physiceanamathetatern
Mark Scheme

	1	1			
3	(i)		B1		Line segment AB (say) of +ve slope from origin Line segment BC (say) of steeper +ve slope and shorter time interval than those for AB SP If the straight line
			B1		AB. SR : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less
			B1		steep slope compared with <i>BC</i> .
		$\not $			(An (x, t) graph is accepted and the references to more/less steep are reversed.)
		Time intervals 80, 40, 40 <i>t</i> = 80, 120, 160	B1 B1		May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft	6	
	(iii)	v = 360/160	M1 M1		Woman's velocity (= 2.25) For equation of man's displacement in relevant
		s = 120 + 4.5(t - 80)	A1		interval Accept omission of -80
		2.25 <i>t</i>	M1		Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression
		$t = 106 \frac{2}{3}$ (107)	A1	5	Accept also 106.6, 106.7 but not 106
		SR Construction method Plotting points on graph	M1		Candidates reading the
		paper <i>t</i> between 104 and 109 inclusive	A1		displacement intersection from graph, then dividing this distance by the woman's speed to find <i>t</i> , also get v = 360/160 M1 as above for
_					the woman's velocity.
4	(i) (ii)	Displacement is 20 m	B1	1	20+c (from integration) B0 For using $s(t) = \int v(t)dt$
		$(A - 0.01^3 - 0.45^2 + 0.01^3)$	M1		J
		$s(t) = 0.01t^3 - 0.15t^2 + 2t$ (+A)	A1		Can be awarded prior to cancelling
		10 - 15 + 20 + A = 20 Displacement is	M1		For using $s(10) = cv$ (20)
		$0.01t^3 - 0.15t^2 + 2t + 5$	A1	4	AG
	(iii)	<i>a</i> = 0.06 <i>t</i> – 0.3	M1 A1		For using <i>a</i> (<i>t</i>) = d <i>v</i> /d <i>t</i>
		0.06t - 0.3 = 0.6	DM1		For starting solving $a(t) = 0.6$ depends on previous M1
		t = 15 Displacement is 35 m	A1 B1	5	
				5	

Mark Scheme

June 2006

5	<i>(</i> i)		M1		For using $F = 5$ and $F = \mu R$
5	(i)				To rusing $r = 5$ and $r = \mu R$
		R = mg	M1		
		m = 2.55	A1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	B1		
	(1)4	$R = P \sin \alpha + 25$ $0.2R = 6$	M1 A1ft B1		For resolving vertically with 3 distinct forces Or $P \sin \alpha + (cv m)g$ For using $F = 6$ and $F = \mu R$.
					Can be implied by $0.2(P\sin \alpha + 25) = 6$
		$0.2(P\sin \alpha + 25) = 6$	M1		For an equation in $P\sin \alpha$ (=5)after elimination of R
		$\alpha = 39.8^{\circ}$	A1		Accept a r t 40°
	(ii)b	$P^2 = 6^2 + 5^2$ or $P \cos 39.8^\circ = 6$ or $P \sin 39.8^\circ = 5$	M1		For eliminating or substituting for α with cv(6). Evidence is needed that 5 is the value of $P\sin \alpha$ (rather than the original frictional force)
		<i>P</i> = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
	.,	Driving force below 15000	A1		Accept generalised case or
		gives retardation		2	specific instance
	(ii)	35000 – 15000 = 80000a	M1		Newton's second law for
	(")				whole train
		Acceleration is 0.25 ms ⁻²	A1	2	
		Acceleration is 0.25 ms		∠	AG Accept verification
	(iii)	35000 – 10500 – 8500 = 0.25 <i>m</i>	M1 A1		For applying Newton's second law to <i>E</i> only, at least 2 forces out of the relevant 3.
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second law with all appropriate forces
		-15000 - 15000 = 80000 <i>a</i> OR -3000-10500-15000=(80000	A1		<i>a</i> = -0.375
		- m)a			
			M1		For applying Newton's second law to <i>B</i> only, only 1 force
		-1500 = <i>ma</i>	A1		Or cv(a)
		Mass is 4000 kg	A1	5	
	(v)	$-15000 - 10500 \pm T$ = 64000(-	B1ft		Follow through $cv (m_E, a)$, or accept use of m_E , a
		0.375) $T = \pm 1500 \Rightarrow$ forward force on <i>E</i> of 1500 N OR (working with A and B) -1500 - 3000 $\pm T$	B1	2	Follow through cv (<i>m</i> _E , <i>a</i>), or
		= (80000 - 64000)(- 0.375)	B1ft B1		accept use of $m_{\rm E}$, a
		$T = \pm 1500 \Rightarrow$ forward force on <i>E</i> of 1500			

M1

4728	Mark	Scheme	Э	June 2006
	$a = (\mp)4ms^{-2}$ -mgsin15° - F = ma	A1 M1		For applying Newton's second law with 2 forces
	-0.1×9.8sin15° – $F = 0.1 \times (-4)$	A1		
	$R = 0.1g \cos 15^{\circ}$ 0.146357 = μ 0.946607	B1 M1		For using $F = \mu R$
	Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
(ii)	$mgsin15^{\circ} > \mu mgcos15^{\circ}$ (or tan 15° > μ)	M1		For comparing weight component with frictional force (or tan 'angle of friction' with μ)
	➔ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
(iii)	$(6 + 0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
	$mgsin15^\circ - F = ma$	M1		For using Newton's second law with 2 forces
	0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong
	v ² = 2(1.07285)4.5	M1		value of <i>R</i> For using $v^2 = 2as$ with any value of <i>a</i>
	Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working