Mark Scheme 4728 June 2006

3	(i)	 Time intervals 80, 40, 40 $t=80,120,160$	B1 B1 B1 B1 B1	Line segment $A B$ (say) of +ve slope from origin Line segment $B C$ (say) of steeper + ve slope and shorter time interval than those for $A B$. $S R$: If the straight line segments are joined by curves, this B1 mark is not awarded Line segment CD (say) of less steep slope compared with $B C$. (An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0,0) and (160, 360)	B1 ft 6	
	(iii)	$\begin{align*} & v=360 / 160 \\ & s=120+4.5(t-80) \\ & 2.25 t \\ & t=106 \frac{2}{3} \quad(107) \tag{107} \end{align*}$ SR Construction method Plotting points on graph paper t between 104 and 109 inclusive	M1 M1 A1 M1 A1 5 M1 A1	Woman's velocity (= 2.25) For equation of man's displacement in relevant interval Accept omission of -80 Woman's displacement, awarded even if t is interpreted differently in man's expression Accept also 106.6, 106.7 but not 106 Candidates reading the displacement intersection from graph, then dividing this distance by the woman's speed to find t, also get $v=360 / 160 \quad \mathrm{M} 1$ as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1 1	$20+\mathrm{C}$ (from integration) B0
	(ii)	$\begin{aligned} & s(t)=0.01 t^{3}-0.15 t^{2}+2 t \\ & (+A) \\ & 10-15+20+A=20 \\ & \text { Displacement is } \\ & 0.01 t^{3}-0.15 t^{2}+2 t+5 \end{aligned}$	M1 A1 M1 A1 4	For using $s(t)=\int v(t) d t$ Can be awarded prior to cancelling For using $s(10)=c v(20)$ AG
	(iii)	$\begin{aligned} & a=0.06 t-0.3 \\ & 0.06 t-0.3=0.6 \\ & t=15 \\ & \text { Displacement is } 35 \mathrm{~m} \end{aligned}$	M1 A1 DM1 A1 B1 5	For using $a(t)=d v / d t$ For starting solving $a(t)=0.6$ depends on previous M1

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& (i) \& \[
\begin{aligned}
\& R=m g \\
\& m=2.55
\end{aligned}
\] \& \[
\begin{array}{|ll|}
\hline \text { M1 } \& \\
\text { M1 } \& \\
\text { A1 } \& 3 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
For using \(F=5\) and \(F=\mu R\) \\
Accept 2.5 or 2.6
\end{tabular} \\
\hline \& (ii) a

(ii) \mathbf{b} \& \[
$$
\begin{aligned}
& P \cos \alpha=6 \\
& R=P \sin \alpha+25 \\
& 0.2 R=6 \\
& \\
& 0.2(P \sin \alpha+25)=6 \\
& \\
& \alpha=39.8^{\circ} \\
& P^{2}=6^{2}+5^{2} \\
& \text { or } P \cos 39.8^{\circ}=6 \\
& \text { or } P \sin 39.8^{\circ}=5 \\
& P=7.81 \\
& P
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1ft |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 | \& | For resolving vertically with 3 distinct forces |
| :--- |
| Or $P \sin \alpha+(c v m) g$ |
| For using $F=6$ and $F=\mu R$. |
| Can be implied by $0.2(P \sin \alpha+25)=6$ |
| For an equation in |
| $P \sin \alpha$ (=5)after elimination of R |
| Accept art 40° |
| For eliminating or substituting for α with $\operatorname{cv}(6)$. Evidence is needed that 5 is the value of $P \sin \alpha$ (rather than the original frictional force) |
| Accept a r t 7.8 |

\hline 6 \& (i) \& | $10500+3000+1500$ |
| :--- |
| Driving force below 15000 gives retardation | \& \[

$$
\begin{array}{ll}
\hline \text { M1 } & \\
\text { A1 } & \\
\hline
\end{array}
$$
\] \& For summing 3 resistances Accept generalised case or specific instance

\hline \& (ii) \& | $35000-15000=80000 a$ |
| :--- |
| Acceleration is $0.25 \mathrm{~ms}^{-2}$ | \& \[

$$
\begin{array}{ll}
\mathrm{M} 1 & \\
\text { A1 } & 2
\end{array}
$$
\] \& Newton's second law for whole train AG Accept verification

\hline \& (iii) \& \[
$$
\begin{aligned}
& 35000-10500-8500= \\
& 0.25 \mathrm{~m} \\
& \text { Mass is } 64000 \mathrm{~kg}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 |
| 3 | \& For applying Newton's second law to E only, at least 2 forces out of the relevant 3 .

\hline \& (iv) \& \[
$$
\begin{aligned}
& -15000-15000=80000 a \\
& \text { OR } \\
& -3000-10500-15000=(80000 \\
& -m) a \\
& \\
& -1500=m a \\
& \text { Mass is } 4000 \mathrm{~kg}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| M1 |
| A1 |
| A1 |
| 5 | \& | For applying Newton's second law with all appropriate forces $a=-0.375$ |
| :--- |
| For applying Newton's second law to B only, only 1 force Or cv(a) |

\hline \& (v) \& \[
$$
\begin{aligned}
& -15000-10500 \pm T \\
& 0.34000(- \\
& 0.375) \\
& T= \pm 1500 \rightarrow \text { forward force } \\
& \text { on } E \text { of } 1500 \mathrm{~N} \\
& \text { OR (working with A and B) } \\
& -1500-3000 \pm T \\
& \quad=(80000-64000)(- \\
& 0.375) \\
& T= \pm 1500 \rightarrow \text { forward force } \\
& \text { on } E \text { of } 1500
\end{aligned}
$$

\] \& | B1ft | |
| :--- | :--- |
| B1 | 2 |
| | |
| B1ft | |
| B1 | | \& | Follow through $\mathrm{cv}\left(m_{\mathrm{E}}, \mathrm{a}\right)$, or accept use of m_{E}, a |
| :--- |
| Follow through $\mathrm{cv}\left(m_{\mathrm{E}}\right.$, a), or accept use of m_{E}, a |

\hline
\end{tabular}

7	(i)	$0=6+(\pm) 1.5 a$	M1	For using $v=u+$ at with $v=0$

	$\begin{aligned} & a=(\mp) 4 \mathrm{~ms}^{-2} \\ & -m g \sin 15^{\circ}-F=m a \end{aligned}$ $-0.1 \times 9.8 \sin 15^{\circ}-F=0.1 \times(-$ 4) $\begin{aligned} & R=0.1 g \cos 15^{\circ} \\ & 0.146357 \ldots=\mu 0.946607 \end{aligned}$ Coefficient is 0.155	A1 M1 A1 B1 M1 A1	7	For applying Newton's second law with 2 forces For using $F=\mu R$ Anything between 0.15 and 0.16 inclusive
(ii)	$m g \sin 15^{\circ}>\mu m g \cos 15^{\circ}$ (or $\tan 15^{\circ}>\mu$) \rightarrow particle moves down	M1	2	For comparing weight component with frictional force (or tan 'angle of friction' with $\mu)$ Awarded if conclusion is correct even though values are wrong
(iii)	$\begin{aligned} & (6+0) \div 2=s \div 1.5 \\ & s=4.5 \\ & m g \sin 15^{\circ}-F=m a \\ & 0.25364 \ldots-0.146357 \ldots= \\ & 0.1 a \\ & v^{2}=2(1.07285 \ldots) 4.5 \\ & \text { Speed is } 3.11 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 M1 A1	6	For using $(u+v) \div 2=s \div t$ For using Newton's second law with 2 forces Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong value of R For using $v^{2}=2$ as with any value of a Accept anything rounding to 3.1 from correct working

